

于创未来

国际肺癌前沿及创新论坛

INTERNATIONAL SUMMIT ON FRONTIERS AND INNOVATIONS IN LUNG CANCER

中国创新升级 助力肿瘤全球化防控

Innovating from China: Powering the next wave of global cancer care

朱俊 博士 Dr. Jason Zhu

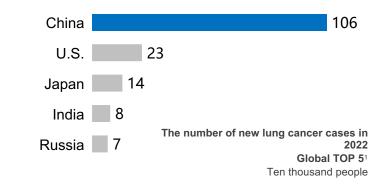
复宏汉霖执行董事,首席执行官 Henlius Executive Director and Chief Executive Officer

Lung Cancer—The NO.1 cancer killer globally

Non-Small Cell Lung Cancer (NSCLC)

Accounts for approximately 85% and originates from larger cells in the lungs.

Small Cell Lung Cancer (SCLC)

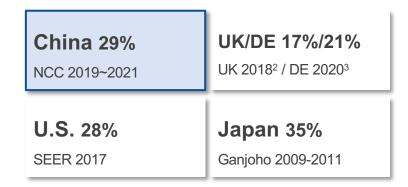

Accounts for approximately 15% of lung cancer cases and is more invasive with faster growth.

Annual global new cases

~ 2.4 million people¹

The most common cancer worldwide

China's new lung cancer cases far exceed other countries



Annual global mortality

~1.8 million people¹

#1 Cancer killer for 30 Years, ~18.7% mortality rate

Global five-year survival has improved but remains suboptimal

- 1. World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer
- 2. Trends over 48 years in a one-number index of survival for all cancers combined, England and Wales (1971–2018): a population-based registry study Coleman, Michel P. et al. The Later Region at tealth 国民時の帰,始中所名 2013多新 论 坛
 3. https://www.krebsdaten.de/Krebs/EN/Content/Cancer sites/Lung cancer/lung cancer/lung cancer node.html

A Biopharma Company from China to the World

Benefiting 900,000+Patients

marketed products

products approved for marketing overseas

approved countries

Therapeutic Area

Tumor

Autoimmune

Ophthalmology

Henlius Brings Hope to Lung Cancer Patients Worldwide

100,000+

lung cancer patients have benefited from treatment with Henlius' products

HANSIZHUANG®-Serplulimab

- Launched in ~40 countries
- First one anti-PD-1 approved globally for 1st Line ES-SCLC
- Indicated for sq/ns-NSCLC, ES-SCLC and ESCC

HANBEITAI®-Bevacizumab

- The 4th independently developed product by Henlius
- Indicated for advanced/metastatic, or recurrent NSCLC

Henlius' international innovation capabilities span from R&D to production

Cutting-edge Innovation and Global R&D Capabilities

Three differentiated Technology Platforms with Global Competitiveness

Tri-specific T cell engager

Hanjugator™ ADC platform

HAI Club Platform

Global Clinical Development Operations and Regulatory Development

Globally Integrated Clinical Operations and Development Capabilities

20+ countries 1,000+ clinical research centers
10,000+ patients (over 1,700 ex-China)
Main countries/regions (China, the United States,
Japan, Australia, etc.)

An in-house global clinical team of ~500 people

A Global Regulatory Affairs team with Indepth Knowledge of Global Regulatory
Approval Pathways

- 9 launched products
- 6 approved overseas
- 4 launched in U.S. & Europe

Over 140 clinical trial approvals obtained across multiple countries and regions, including China, the US, Europe, Japan, and Australia.

International Leading Capabilities on Manufacturing and Quality

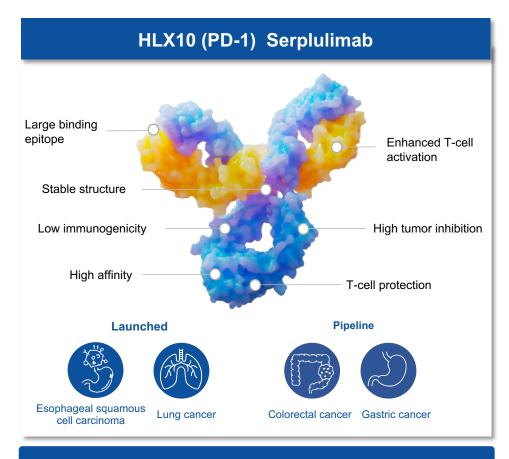
Management

Three Plants:

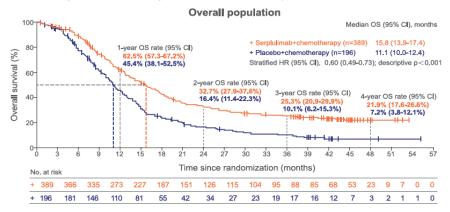
Commercial GMP production exceeds 1,150 batches

Certified to GMP Standards in Multiple Countries and Regions

An International Standard QMS Throughout the Product Lifecycle



HLX10: World's first anti-PD-1 mAb for the first-line treatment of SCLC


- ASTRUM-005 study long-term follow-up data, first release of 4-year OS rate: 21.9%
- LS-SCLC and colorectal cancer have completed patient enrollment
- ES-SCLC will submit to the US FDA for marketing application by 2026
- First patient dosed in Japan for small cell lung cancer bridge study
- Gastric cancer surgery phase clinical trial achieved positive results, supporting early submission, ushering in the era of chemo-free therapy

The world's first anti-PD-1 monoclonal antibody approved for first-line treatment of SCLC

Long-term results and patient-reported outcomes from the ASTRUM-005 study, first published 4-year OS rate: 21.9%

By the data cutoff of May 7, 2024, the median follow-up duration was 42.4 months.

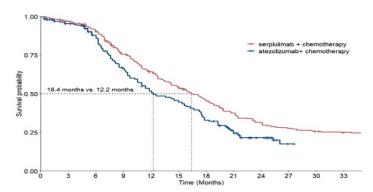
From East to West, the global launch plan will continue to advance patients worldwide.

Differentiated Indications:

- Positive results have been achieved in the perioperative clinical trial for gastric cancer, which is expected to change the treatment landscape
- Patient enrollment has been completed for the clinical trials of LS-SCLC and colorectal cancer

New Markets to Explore:

- U.S.: For ES-SCLC, >100 clinical sites have been activated, all enrollment has been completed; FDA BLA submission is planned in 2026 for LS/ES-SCLC
- Japan: Completed first patient dose in the Japanese bridging study for SCLC

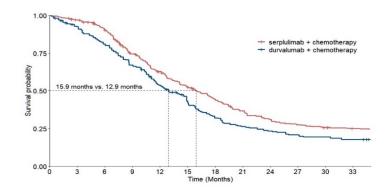


Serplulimab gains EU orphan drug designation with demonstrated clinical benefit

ASTRUM-005 vs. IMpower133

	MAIC
mPFS	5.5m vs. 5.2m
HR (95% CI)	0.73 (0.53, 0.99)
mOS	16.4m vs. 12.2m
HR (95% CI)	0.72 (0.51, 1.01)

Both mOS and mPFS demonstrated superiority over the approved therapies of Atezolizumab+chemo and Durvalumab+chemo.



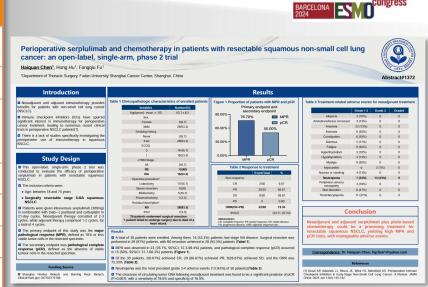
The highly consistent sensitivity analyses further confirm the robust and reliable clinical benefit of Serplulimab in treating ES-SCLC

MAIC Analysis	Active Arm	Control Arm		HR (95% CI)
Primary analysis	240	126	→	0.72 (0.51, 1.01
Submitted sensitivity analysis 1	301	151	-	0.78 (0.56, 1.08
Submitted sensitivity analysis 2	117	58		0.70 (0.48, 1.02
Submitted sensitivity analysis 3	210	100	-	0.77 (0.53, 1.10
Submitted sensitivity analysis 4	219	105	-	0.74 (0.52, 1.07
Submitted sensitivity analysis 5	215	102	-	0.78 (0.54, 1.12
Submitted sensitivity analysis 6	225	108	-	0.76 (0.53, 1.09
Submitted sensitivity analysis 7	236	116	-	0.74 (0.53, 1.05
Submitted sensitivity analysis 8	244	120	-	0.73 (0.52, 1.03
Submitted sensitivity analysis 9	248	119	-	0.75 (0.53, 1.06
Submitted sensitivity analysis 10	257	124	-	0.74 (0.53, 1.04
Submitted sensitivity analysis 11	26	9	<	0.38 (<0.1, >10)
Submitted sensitivity analysis 12	2	1		Inf (NA, NA)
Submitted sensitivity analysis 13	127	58		0.57 (0.38, 0.86
New sensitivity analysis 1	92	37	←	0.50 (0.29, 0.85
New sensitivity analysis 2	224	97	-	0.75 (0.53, 1.08
New sensitivity analysis 3	219	122		0.71 (0.50, 1.01
lote: . The new sensitivity analysis was based on: . The IPD-pseudo dataset was reconstructed in the IMpower133 study.			0.3 0.5 0.7 0.9 1. serplulimab better co	nparator better

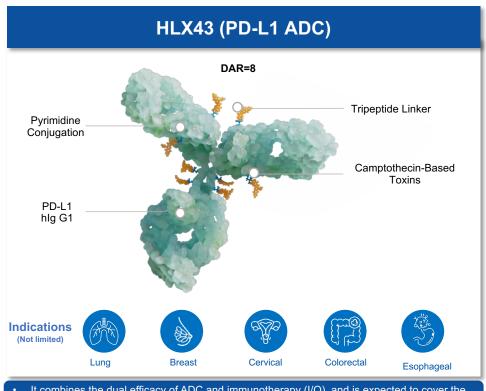
ASTRUM-005 vs CASPAIN

	MAIC
mPFS	5.5m vs. 5.1m
HR (95% CI)	0.70 (0.53, 0.94)
mOS	15.9m vs. 12.9m
HR (95% CI)	0.78 (0.57, 1.05)

Effective Sample Size (ESS) MAIC Analysis HR (95% CI) 0.78 (0.57, 1.05) Primary analysis 0.84 (0.63, 1.12) Submitted sensitivity analysis ' 174 0.77 (0.56, 1.07) 0.77 (0.57, 1.05) 0.80 (0.59, 1.09) 0.80 (0.59, 1.08) 0.82 (0.60, 1.11) 0.50 (<0.1. >10.0) Inf (NA, NA) 0.64 (0.43, 0.93) 0.59 (0.36, 0.96) 0.76 (0.55, 1.04) 0.3 0.5 0.7 1. The new sensitivity analysis was based on the existing data already submitted.


in the CASPIAN study.

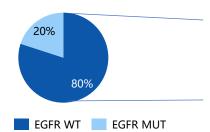
HLX10 (Serplulimab) granted orphan drug designation in the US & EU for SCLC


Serplulimab is dedicated to bringing long-term survival benefits to more lung cancer patients

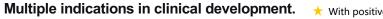
Globally, there are ~744K new cases of sqNSCLC annually, with stage II-IIIA operable patients accounting for about 20% (~148K individuals). HLX10IIT21 in perioperative sqNSCLC yielded striking rates of 50% pCR and 76.7% MPR, a marked improvement over prior regimens, enhancing hope for patient survival.

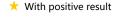
	Checkmate 816	Checkmate 77T	KEYNOTE-671	AEGEAN	Neotorch	RATIONALE 315	NADIM II	HLX10IIT21
Study drug	Nivolumab	Nivolumab	Pembrolizumab	Durvalumab	Toripalimab	Tislelizumab	Nivolumab	Serplulimab
Study Phase	III	III	III	III	III	III	II (IIT)	II (IIT)
Study design	3 cycles of neo- adjuvant + Adjuvant CT/RT	4 cycles of neo- adjuvant + 1y IO mono adjuvant	4 cycles of neo- adjuvant + 13 cycle IO mono adjuvant	4 cycles of neo- adjuvant + 12 cycle IO mono adjuvant	3 cycles of neo- adjuvant + 1 cycle CT + 13 cycle IO mono adjuvant	3-4 cycles of neo- adjuvant + 8 cycle IO mono adjuvant (Q6W)	3 cycles of neo- adjuvant IO comb CT + 6m IO mono adjuvant	2-3 cycles of neo- adjuvant IO comb CT+ 1-2 cycle adjuvant IO comb CT
Patient type	IB-IIIA (AJCC v7.)	IIA-IIIB(N2) (AJCC v8.)	Resectable Stage II, IIIA, and IIIB (N2)	IIA-IIIB	IIIA/B (<u>m</u> A:67.3%)	II-IIIA	Resectable Stage IIIA-IIIB NSCLC	II-IIIA sqNSCLC
⊞%vsII%	63.1% vs 36%	64% vs 35%	70.3% vs 29.7%	71.3% vs 28.4%	100.00%	58.4% vs 48.2%		53.3% vs 46.7%
Primary endpoint	pCR; EFS	EFS	EFS;OS	pCR;EFS	EFS;MPR	EFS;MPR/pCR	ITT: pCR	MPR; pCR
Underwent curative surgery	83% vs 75%	78% vs 77%	98.5% vs 95.3%	77.6% vs 76.7%	82.2% vs 73.3%	84.1% vs 76.2%		96.6%
Enrollment	358	461	797	802	404	453	86	30
sq vs. nsq	48.6% vs 51%	51% vs 49%	43.1% vs 59.6%	46.2% vs 53.6%	77.7% vs 22.3%	79.2% vs 19.9%		100% vs 0%
pCR%	24.0%	25.3%	18.1%	17.2%	24.8%	40.7%	37%	50%
MPR%	36.90%	35.40%	30.20%	33.30%	48.50%	56.20%	53%	76.7%
irAE%			25.3% vs 10.5%	23.5%vs 9.8%	42.1%vs 22.8%	unpublished	unpublished	

HLX43: a PD-L1 ADC with high efficacy, low toxicity, and I/O function, demonstrating prominent broad-spectrum anti-tumor potential



- It combines the dual efficacy of ADC and immunotherapy (I/O), and is expected to cover the
 entire patient population (not limited to PD-L1-positive patients)
- The Phase I clinical trial has demonstrated outstanding preliminary efficacy, with particularly remarkable performance in non-small cell lung cancer (NSCLC) and thymic squamous cell carcinoma
- It has obtained approvals in China, the United States, Australia, and Japan to initiate a Phase
 II international multi-center clinical trial (MRCT) for advanced NSCLC, making it the first
 domestically developed PD-L1 ADC to enter Phase II
- It is simultaneously advancing the development for multiple tumor types and actively
 exploring a variety of combination regimens, including combination therapy with Serplulimab.
- Granted ODD by the U.S. FDA in Thymic Epithelial Tumors (TETs)


Annual Global New Cases


~2.0_{mil} 1,2

EGFR wild-type:

Large patient population and significant unmet clinical needs.

824k

661k

PDAC 511k

HER2-BC

1960k

ESCC 380k

CRC

1930k

oc 324k

HNSCC

120k

HLX43 was well-tolerated across different doses, with no new safety signals observed. It demonstrated encouraging preliminary efficacy in patients with advanced solid tumors (including NSCLC and TSCC) who had failed previous standard treatments

Broad Therapeutic Effects

Outstanding efficacy across multiple tumor types, including TSCC, heavily treated NSCLC

___В

GC

968k

Not Dependent on Biomarkers

It has demonstrated efficacy in a variety of NSCLC

- Regardless of the presence or absence of EGFR mutations
- Regardless of the presence or absence of brain metastases.

Favorable Safety Profile

Low hematologic toxicity (grade ≥3 TRAE are rare), which provides strong support for its future expansion to first-line treatment and combination regimens

- World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer
- 2. Leiter, A., Veluswamy, R.R. & Wisnivesky, J.P. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 20, 624–639 (2023).

HLX07 enables dual-target synergy, pioneering a new path for 1L-treatment of EGFR-high-expression sqNSCLC

HLX07 (EGFR) **Modified Humanized Monoclonal Antibody Targeting EGFR** First-line treatment of sqNSCLC with high EGFR Indication expression (H-score ≥ 150) *Approximately 89% of patients with sqNSCLC have high expression

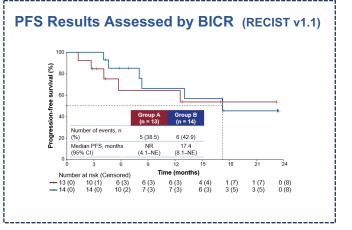
- Compared with cetuximab, this product exhibits lower immunogenicity and better target affinity.
- Through Fc region engineering, HLX07 significantly extends the product's half-life; its 3-week administration frequency makes it more suitable for clinical combination with immunooncology products.
- Preclinical studies have shown that HLX07 has superior biological activity, can significantly inhibit the growth of tumor cells in different tumor models, and demonstrates strong synergy with the H-drug

The HLX10HLX07-sqNSCLC-201 study is a randomized, multicenter phase II dose-finding trial consisting of four parts, which evaluates multiple combinations of HLX07 (at different doses), Serplulimab, and chemotherapy. According to the updated data, the combination of HLX07, Serplulimab, and chemotherapy has demonstrated significant anti-tumor activity and durable efficacy in patients with EGFR-high-expression sqNSCLC

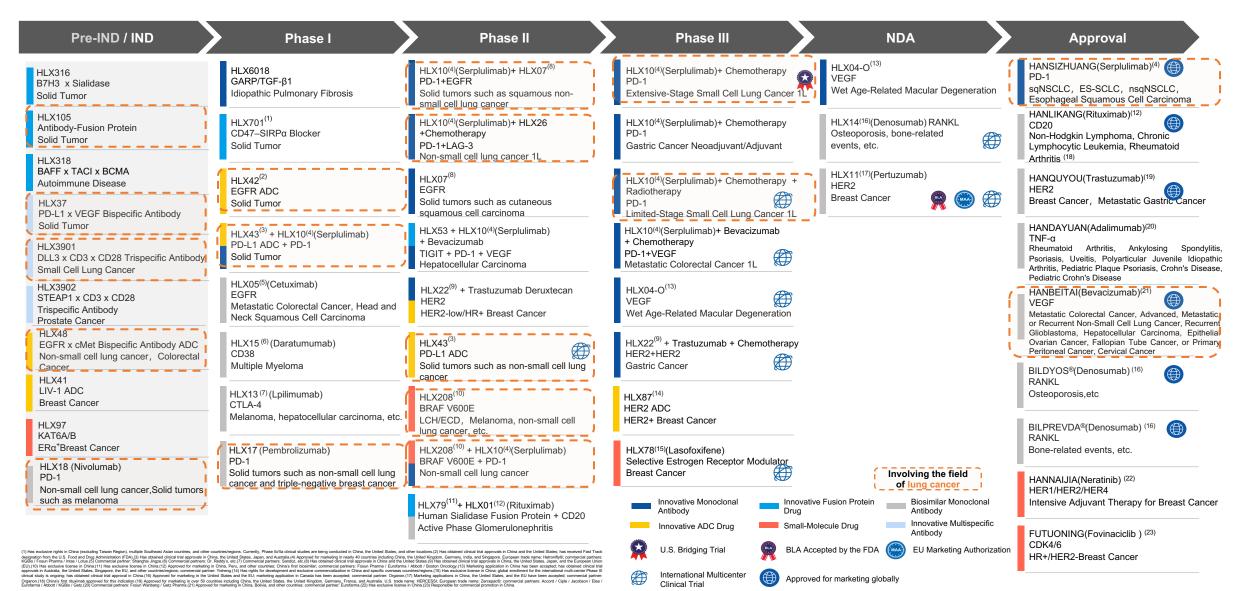
Positive Efficacy Signals (Median Follow-Up: 18.6 Months)

mPFS 17.4 months	DCF 100%			mOS Not Reached
VS. 8.0m Per	obrolizumab NOTE-407 10.1 m	Benmelstobart TQB2560-III-12 11.1m	Ivonescimab HARMONI-6	

Favorable Safety Profile


- Common adverse events are controllable
- · No new safety signals observed

Significant Mechanistic Advantages


- Compared with cetuximab: lower immunogenicity and better target affinity
- Extended half-life and longer administration interval, making it more suitable for combination with I/O agents
- Demonstrated synergistic effects when combined with PD-1 inhibitors across different tumor models

Tumor Response Status

	Group A (n = 13)	Group B (n = 14)
ORR, % (95% CI)	69.2 (38.6–90.9)	71.4 (41.9–91.6)
DCR, % (95% CI)	92.3 (64.0–99.8)	100.0 (76.8–100.0)
Complete response, n (%)	0	0
Partial response, n (%)	9 (69.2)	10 (71.4)
Stable disease, n (%)	3 (23.1)	4 (28.6)
Progressive disease, n (%)	1 (7.7)	0
Not evaluable, n (%)	0	0

Henlius Pipeline: Poised for Multiple Breakthroughs in Lung Cancer

THANKS

科学引领未来: 早期肺癌创新管线布局与展望

Science Leading the Future: Early-Stage Lung Cancer Pipeline and Strategic Outlook

袁纪军博士 Dr. Jijun Yuan

复宏汉霖首席科学官 CSO of Henlius

Henlius' R&D Strategic Plan

Major Modalities

Antibody: mAb, bispecific, multi-specific

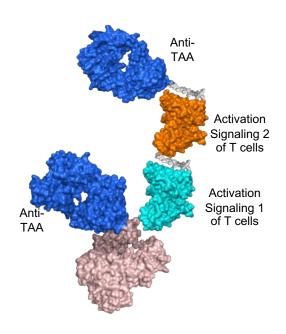
ADC: single payload, multiple payloads

Fusion Protein: antibody fused with functional protein

Small Molecule

Key Indications

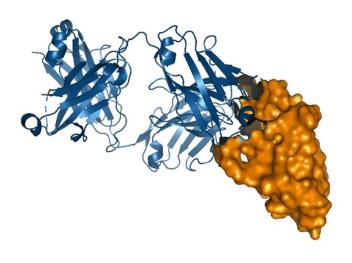
Tier1 Cancer: lung cancer, breast cancer, colon cancer


I&I Disease: IBD, SLE, atopic dermatitis, asthma, etc.

Tier2 Cancer: HCC, GC, PDAC, prostate cancer, etc.


Henlius' Technology Platforms

Tri-specific T cell engager

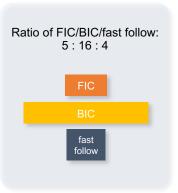

- Persistent specific T-cell activation effect
- Better efficacy in tumor microenvironment
- Reduced occurrence of CRS

Hanjugator™ ADC platform

- Larger therapeutic window
- Overcome potential drug resistance
- · Combination of toxins with multiple MOA

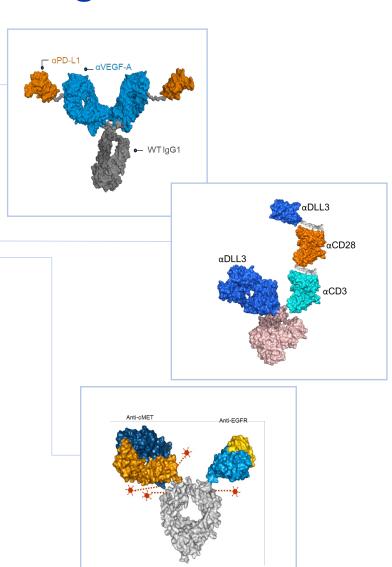
HAI Club platform

- · Targets identification & validation
- Cost reduction and efficiency improvement
- Increasing the success rate of drug discovery

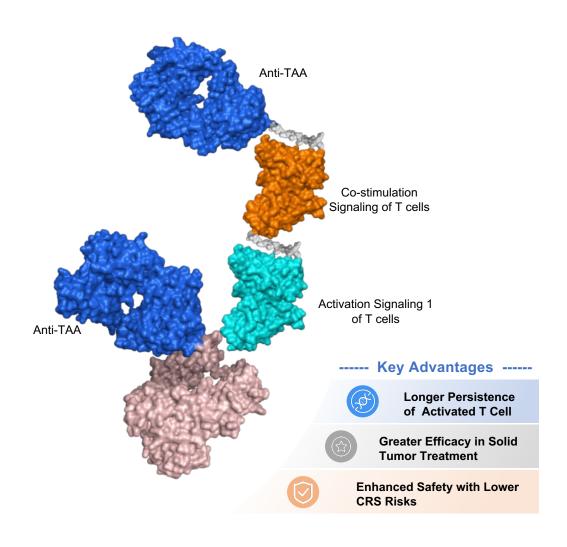

Preclinical Pipeline Overview

PCC to IND stage:

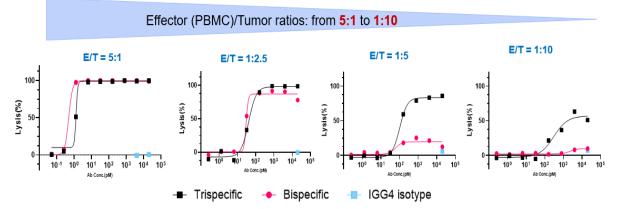
	MOLECULE	INDICATION	Novelty
1	HLX37 PDL1xVEGF BsAb	Solid tumor	Fast Follow
2	HLX3901 DLL3xDLL3xCD3xCD28 TCE	SCLC	BIC •
3	HLX316 B7H3-sialidase fusion protein	Solid tumor	FIC •
4	HLX97 KAT6 A/B inhibitor	BC	BIC •
5	HLX48 EGFRxcMet BsADC	NSCLC, CRC	BIC •
6	HLX3902 STEAP1xSTEAP1xCD3xCD28 TCE	Prostate cancer	BIC •
7	HLX41 LIV1 ADC	BC	BIC •
8	HLX403	Solid tumor	BIC •
9	HLX49	Solid tumor	BIC •
10	HLX85	Solid tumor	FIC •
11	HLX402	Solid tumor	FIC •
12	HLX109	I&I disease	BIC •


Discovery stage:

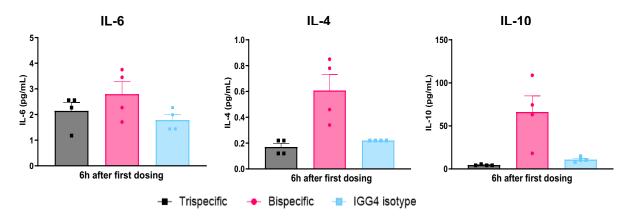
	MOLECULE	INDICATION	Novelty
1	HLX68	I&I disease	Fast Follow
2	HLX67	I&I disease	BIC
3	HLX105 antibody fusion protein	Solid tumor	BIC
4	HLX318 BAFFxTACIxBCMA fusion protein	I&I disease	BIC •
5	HLX320	I&I disease	BIC •
6	HLX69	CNS	Fast Follow
7	HLX321	Solid tumor	BIC
8	HLX322	Solid tumor	BIC
9	HLX323	Solid tumor	BIC •
10	HLX86	Solid tumor	BIC
11	HLX203	Obesity	Fast Follow
12	HLX204	Obesity	FIC
13	HLX108	Solid tumor	FIC


Preclinical Pipeline – Lung Cancer

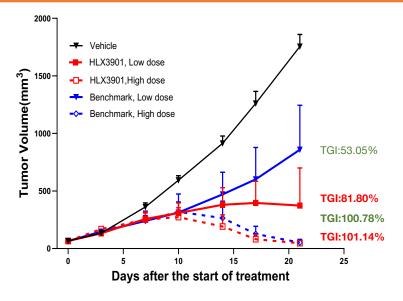
MOLECULE	INDICATION
HLX37 PDL1xVEGF BsAb	Solid tumor
HLX3901 DLL3xDLL3xCD3xCD28 TCE	SCLC
HLX316 B7H3-sialidase fusion protein	Solid tumor
HLX97 KAT6 A/B inhibitor	вс
HLX48 EGFRxcMet BsADC	NSCLC, CRC
HLX3902 STEAP1xSTEAP1xCD3xCD28 TCE	Prostate cancer
HLX41 LIV1 ADC	вс
HLX403	Solid tumor
HLX49	Solid tumor
HLX85	Solid tumor
HLX402	Solid tumor
HLX109	I&I disease



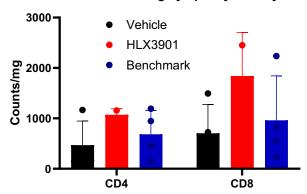
MOLECULE	INDICATION
HLX68	I&I disease
HLX67	I&I disease
HLX105 antibody fusion protein	Solid tumor
HLX318 BAFFxTACIxBCMA fusion protein	I&I disease
HLX320	I&I disease
HLX69	CNS
HLX321	Solid tumor
HLX322	Solid tumor
HLX323	Solid tumor
HLX86	Solid tumor
HLX203	Obesity
HLX204	Obesity
HLX108	Solid tumor

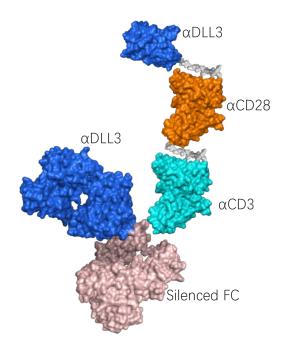

Henlius Advanced TAAxCD3xCD28 Multi-specific TCE Platform

Efficacy: better in lower E/T ratio

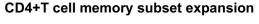


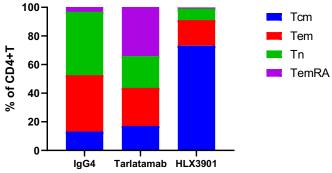
Safety: Lower CRS

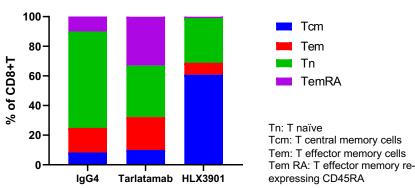



HLX3901: The "Best-in-Class" DLL3 TCE

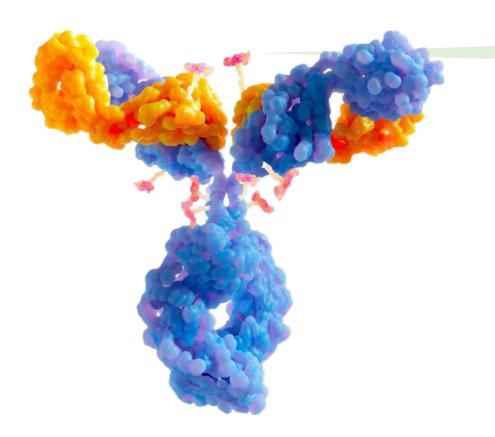
HLX3901 is more efficacious than competitor compounds in the SHP-77 model




Tumor Infiltrating Lymphocyte Analysis

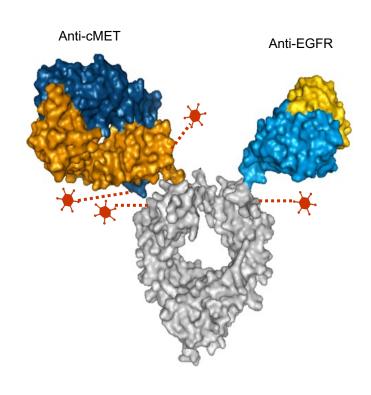


HLX3901 is More Effective in Inducing the Formation of Memory Cells



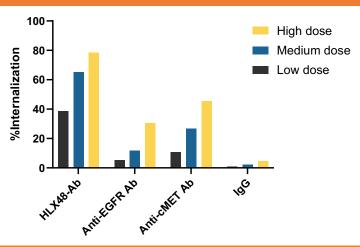
CD8+T cell memory subset expansion

Hanjugator ADC Platform with Enhanced Efficacy and Safety Profile

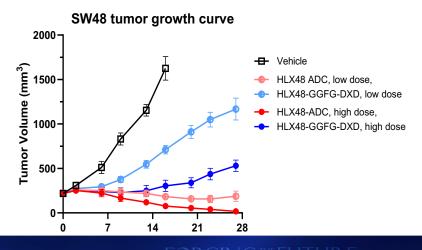

Hydrophilic Unit

GGFG

Toxin


- Good safety profile, maximizes antibody function.
- Highly hydrophilic, compatible to various monoclonal and multispecific antibodies.
- Excellent stability, minimal peripheral toxin release.
- Tenfold stronger bystander effect compared to Deruxtecanconjugated ADCs, better efficacy, addresses tumor heterogeneity.

HLX48: Anti-EGFR X cMET ADC for NSCLC and CRC



- A higher affinity for cMET and a lower affinity for EGFR is selected to mitigate toxicity
- Improved therapeutic window to maximize antibody function
- A stronger bystander effect, addressing the issue of tumor heterogeneity


Bispecific Ab with higher internalization efficiency

HLX48 ADC is significantly more efficacious than HLX48-GGFG-DXD

Henlius R&D Landscape

THANKS